绝密★启用前

2020 年成人高等学校招生全国统一考试高起点物理化学

本试卷分第 | 卷(选择题)和第 ||卷(非选择题)两部分,满分 150 分。考试时间 120 分钟。

题 号	 =	三	总分	统分人签字
分 数				

第 I 卷 (选择题, 共 60 分)

可能用到的数据——相对原子质量 (原子量): H—1 C—12 O—16

得分	评卷人

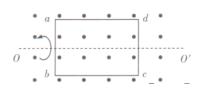
一、选择题: $1\sim15$ 小题,每小题 4 分,共 60 分。在每小题给出的四个选项中,选出一项符合题目要求的。

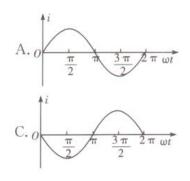
C.向左, W_P>W_O

D.向左, Wp<WQ

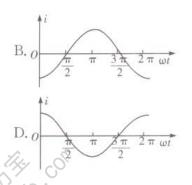
1.如图,实线为一匀强电场的电场线,虚线为一带负电的粒子在该电场中运动的轨迹, $P \times Q$ 为轨迹上的两点。若该粒子只受电场力作用,则关于匀强电场的方向和该粒子在 $P \times Q$ 两点

的电势能 WP、Wo 的比较, 正确的是


A.向右, W_P>W_Q


B.向右, W_P<W_Q

2.下列叙述中,不正确的是


A.物体的内能只与它的温度有关

- B. 物体的温度是由组成该物体分子热运动的平均动能决定的
- C.组成一物体的分子间的势能的总和与该物体的体积有关
- D. 一物体的内能为组成该物体分子热运动的动能与分子间势能的总和
- 3.矩形导线框 abcd 在磁场中以一定的角速度 ω 绕00'轴旋转时可产生正弦交流电,在t=0时刻,线圈平面与匀强磁场垂直,如图所示,若规定电流沿逆时针方向为正,则下列四幅图中正确的是

第1页|共8页

4.如图,一束单色光从厚度均匀、折射率为2的玻璃砖上的A点射人, 在下表面 C 点反射后,又在上表面 B 点处射出,已知 A、B、C 三点 连线组成等边三角形,则入射光 a 与出射光 b 的夹角为 1 A.120° C.75° B.90° D.135° 5.下列原子核反应方程中,X 代表 α 粒子的是 B. ${}_{2}^{4}$ He $+ {}_{4}^{9}$ Bc $\rightarrow {}_{6}^{12}$ C + X A. ${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{17}_{8}O + X$ D. ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{0}^{1}n + X$ C. $^{234}_{90}$ Th $\rightarrow ^{234}_{91}$ Pa+ X 6.如图,质量相同的两个物体并排靠紧放在光滑水平面上,它们分别受到水平推力 F_1 和 F_2 的作 用, 若 $F_1 > F_2$, 则两物体之间的相互作用力为 C. $\frac{F_1 - F_2}{2}$ D. $\frac{F_1 + F_2}{2}$ $A.F_1 - F_2$ B. $F_1 - \frac{F_2}{2}$ 7.如图,一通有电流的矩形线圈处在匀强磁场中,磁场方向与线圈平面平行,电流沿顺时针方 向,则] A.线圈将绕O2O2轴转动 C.线圈将向右运动 B.线圈将向左运动 D.线圈将绕0101轴转动 8.下列化合物中既有离子键,又有共价键的是 1 $C.CH_3COOH$ $A.MgCl_2$ $B.N_{a_2}SO_4$ $D.HNO_3$ 9.某种无色有刺激性气味的气体溶于水,水溶液呈酸性,该气体可能是 1 $A.NH_3$ $C.CO_2$ $D.NO_2$ $B.SO_2$ 10.下列有机物分子中, 既含有醛基又含有羟基的是 1 A.甲酸乙酯 C.丙醛 B.苯酚 D.葡萄糖 11.下列反应发生后,溶液中阳离子浓度会明显增加的是 1 A. 锌片放入硫酸铜溶液中 C.铜片放入稀硫酸溶液中 B.铜片放入氢氧化钠溶液中 D. 锌片放入硫酸铁溶液中 12.某物质水溶液呈弱酸性:向该溶液中滴加 AgNO3 溶液,生成浅黄色沉淀,该物质是

 $C.N_{\alpha}CI$

D.NH₄CI

第 2 页 | 共 8 页

 $A.NH_4B_r$

 $B.KB_r$

升学历,上橙鹿学历宝www.clxlb.com

13	.碱性锌锰电池在生活中	应用广泛,	电池总	反应可表示为:
10		<u> </u>	11 THE LEWIS CO.	/~~/~~ ' ` ` ' ~~/ ` ' \ / ` J •

 $Zn + 2M_nO_2 + 2H_2O = 2M_nOOH + Zn(OH)_2$

该电池工作时,负极上的反应物是

 $A.MnO_2$

 $C.M_nOOH$

 $B.Z_n$

 $D.Zn(OH)_2$

14.下列物质的应用中,利用了氧化还原反应的是

A.用食用醋去除水垢

C.用活性炭吸附异味

B.用 84 消毒液杀菌

D. 用明矾处理污水

15.碳酸氢铵受热分解为吸热反应,其化学方程式为:

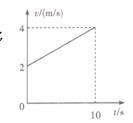
 $NH_4HCO_3(s) \stackrel{\triangle}{\longrightarrow} NH_3(g) + H_2O(g) + CO_2(g)$

在密闭状态下,反应达到平衡后,为防止碳酸氢铵进一步分解可采取的措施是

A.降低压强

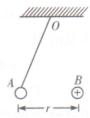
C.减少水蒸气浓度

B.升高温度


D.增加压强

第 Ⅱ 卷(非选择题, 共 90 分)

得分	评卷人


二、填空题: 第 $16\sim26$ 小题, 共 57 分。其中第 $16\sim19$ 小题每小题 6分,第20~26小题每空3分。把答案填在题中横线上。

16.一质点做匀加速直线运动的速度一时间图像如图所示。在 $0\sim10s$ 的时间内, 该质点的加速度大小 $a = m/s^2$, 平均速度大小 $\bar{v} = m/s$, 位移 大小S = m。

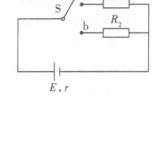
17.质量 m 和速度大小 v 均相同的两个运动物体,在光滑水平面上相向碰撞, 碰撞后,两物体总动能可能的最大值为_____,可能的最小值为____。

18.一质量为m、电荷量为q的小球A用细线悬挂于0点,用一电荷量为Q的正点电荷B靠近 A 球。平衡后,A 球和点电荷 B 恰在同一水平面上,相距为 r,如图所示,则 A 球所带电荷的 符号为 (填"正"或"负")。已知静电力常量为k,重力加速度大小为g,则平衡时悬 线的张力大小T = 。

19.在一次利用单摆测量重力加速度的实验中,测得悬线长为 0.99m,摆球直径为 0.02m。若 摆球完成 50 次全振动所用时间为 100s, 此次实验所测得的重力加速度大小 $g = m/s^2$ 。 (取 π = 3.14, 结果保留 3 位有效数字)

20.乙醛蒸气和氢气的混合物通过热的镍催化剂发生反应,该产物的名称为_____,,该反应类

第3页|共8页



型是_____。
21.有一包白色粉末,由 KCI、BaCl₂、CuSO₄、Na₂S O₄和 NaOH 中的两种组成。现进行下列 实验: (1)取少量白色粉末,加水溶解,得到无色透明溶液。(2)向硫酸铝溶液逐滴加入上述溶液,无明显现象发生,根据以上实验现象,白色粉末的组成可能是_____、___。
22.反应 $C+4HNO_3$ (浓)— CO_2 † $+4NO_2$ † $+2H_2O$ 的氧化产物为_____,若生成 44.8L NO2 气体(标准状况),参加反应的还原剂的质量是______ g。
23.常温时,将 100mL pH=12 的 NaOH 的溶液加水稀释至 1L,稀释后溶液的 pH=____。
24.用稀盐酸除去铁钉上的铁锈(Fe₂O₃•nH₂O)反应完成后,在有铁钉的酸性溶液中,存在的主要金属阳离子是____。
25.元素 X、Y、Z 的原子序数接 X、Y、Z 的顺序依次增大,但都小于 18.Y、Z 属于同一主族,化合物 XZ 的水溶液是一种强酸,Y 和 Na⁺具有相同的电子层结构,Y 原子的结构示意图为_,化合物 XZ 的电子式为____。

得分	评卷人

三、计算题:第 27~29 小题,共 33 分。解答要求写出必要的文字说明、方程式和重要验算步骤。只写出最后答案,而未写出主要验算过程的,不能得分。

27.(11 分)如图,将开关 S 接 a 点时,通过电阻 R_1 的电流 I_1 = 2A。电源输出功率 W_1 =10 W; 当开关 S 接 b 点时,通过电阻 R_2 的电流 I_2 = 1A,电源输出功率 W_2 =5.5 W。求电源的电动势 E 和内阻 r。

28.(12分)两块等高的长木板 A、B 紧靠在一起,静止放置在光滑水平面上,一物块 C(可视为质点)以 v_o =6 m/s 的初速度从 A 板的左端开始运动,如图所示。物块 C 滑过 A 板并在 B 板上滑行一段距离后,与 B 板以相同速度 v=2.5 m/s 一起运动,若 A、B、C 三者的质量均为 m=1 kg。求:

- (1) 当物块 C 滑上 B 板后,A 板具有的动能。
- (2)全过程中损失的机械能。

29.(10 分)某有机物(只含 C、H、O 三种元素)4.4 g 完全燃烧生成 4.48 L(标准状况)二氧化碳和

29.(10分)呆有机物(只含 C、H、O 三种元素)4.4g 完全燃烧生成 4.48 L(标准状况)二氧化碳和 3.6g 水,此有机物与氢气的相对密度为 22。通过计算求出该有机物的分子式。

参考答案及解析

说明:

- (1)第三题如按其他方法或步骤解答,正确的,同样给分;有错的,根据错误情况,酌情给分;只有最后答案而无演算或文字说明的,不给分。
- (2)第三题解答中,单纯因前面计算错误而引起后面数值错误的,不重复扣分。
- (3)对答案的有效数字的位数不作严格要求,一般按试题的情况取两位或三位有效数字即可。

一、选择题

1.【答案】C

【考情点拨】本题考查了带电粒子在匀强电场中运动的知识点。

【应试指导】根据受力分析,带电粒子是从P运动到Q;又因为粒子带负电,所以匀强电场的方向向左,由P到Q,电场对粒子做正功, $W_p>W_Q$ 。

2.【答案】A

【考情点拨】本题考查了内能的知识点。

【应试指导】从宏观看物体的内能和温度有关,但并不是只和温度有关,物体的内能还与物体的质量、状态、体积等因素有关,选项 A 错误,其余选项描述正确。

3.【答案】A

【考情点拨】本题考查了电磁感应定律的知识点。

【应试指导】初始位置线框的磁通量最大,但是磁通量的变化率最小,i=0,开始旋转时,磁通量减小,感应电流磁场方向和原磁场方向相同,根据右手定律判断可知,电流方向为逆时针方向,综合可知 A 选项正确。

4. 【答案】B

【考情点拨】本题考查了折射定律的知识点。

【应试指导】由题意可知, ΔABC 为等边三角形,所以 a 折射角即为 $90^\circ-60^\circ=30^\circ$,由折射定律,a 的入射角 α 满足: $\frac{\sin\alpha}{\sin30^\circ}=\sqrt{2}$, $\alpha=45^\circ$,同理 b 的出射角 $\beta=45^\circ$,即 对光 a 出射光 b 的夹角为 90° 。

5. 【答案】D

【考情点拨】本题考查了原子核反应的知识点。

【应试指导】α粒子即2He,根据核反应方程式产值,只有D选项的X相对质量数为4,电量为2,符合题意。

6.【答案】D

【考情点拨】本题考查了力的相互作用及其牛顿第二定律的知识点。

【应试指导】先将两个物体整体看待,由牛顿第二定律, $F_1-F_2=2ma$,再将两个物体单独分析(这里分析左边物体),设两物体的相互作用力为F,则有: $F_1-F=ma$,结合两式,可以解得 $F=\frac{F_1+F_2}{2}$ 。

7.【答案】D

【考情点拨】本题考查了带电线圈在磁场中的受力的知识点。

【应试指导】由左手定则可以判定,线圈左边有由纸面向里运动趋势,右边有由纸面向外运动趋势,即线圈将绕 O_1O_1 轴转动。

8.【答案】B

【考情点拨】本题考查了化学键的知识点。

【应试指导】A选项,Mg Cl₂ 只有离子键;C选项, CH_3 COOH 是有机酸,只含有共价键;D选项, HNO_3 只含有共价键。

9.【答案】B

【考情点拨】本题考查了常见气体的性质的知识点。

【应试指导】A选项, NH_3 的水溶液呈碱性;C选项, CO_2 是无色无味气体;D选项, NO_2 是红棕色气体,只有 B选项符合。

10.【答案】D

【考情点拨】本题考查了有机物官能团的知识点。

【应试指导】A选项,甲酸乙酯只含有酯基;B选项,苯酚只含有羟基;C选项,丙醛的官能团是醛基;D选项,葡萄糖既有醛基又有羟基。

11.【答案】D

【考情点拨】本题考查了离子反应的知识点。

HATELLY CON

【应试指导】A选项, $Zn+Cu^{2+}$ — $Zn^{2+}+Cu$,,每置换出铜,阳离子浓度不变;B选项,铜和氢氧化钠不反应,阳离子浓度不变;C选项,铜和稀硫酸不反应,铜和浓硫酸在加热条件下会发生反应;D选项,少量锌片放入硫酸铁溶液, $Zn+2Fe^{3+}$ — $Zn^{2+}+2Fe^{2+}$,由离子方程式可知,阳离子数量由反应前的2增加为3,所以阳离子浓度会增加。

12.【答案】A

【考情点拨】本题考查了常见的化学反应现象的知识点。

【应试指导】根据题意,水溶液呈弱酸性,KBr、NaCl 均为中性溶液,不符合; $AgNO_3$ 和 NH_4Cl 反应生成的 AgCl 为白色沉淀,只有 A 选项符合要求。

13.【答案】B

【考情点拨】本题考查了原电池的知识点。

【应试指导】碱性锌锰电池负极上发生的反应为: $Zn+2OH^--2e^ \longrightarrow$ $Zn(OH)_2$,负极上的反应物为 Zn,正极上发生的反应为 $2MnO_2+2H_2O+2e^ \longrightarrow$ $2MnOOH+2OH^-$,故选 B 项。

14.【答案】B

【考情点拨】本题考查了氧化还原反应的知识点。

【应试指导】A选项,醋和水垢反应主要是醋酸和碳酸钙反应生成醋酸钙、二氧化碳和水,不是氧化还原反应。B选项,消毒液的主要成分是次氯酸钠(NaClO),次氯酸钠水解生成次氯酸(HClO),具有强氧化性,将具有还原性的物质氧化,从而起到消毒的作用,属于氧化还原反应;C选项,活性炭吸附属于物理作用。D选项,明矾是由硫酸钾和硫酸铝组成的复合盐。明矾碰到水,就会发生化学变化生成白色絮状的氢氧化铝。这种氢氧化铝是一种胶体粒子,带有正电荷,它一碰上带负电的尘埃胶粒,就中和聚结,沉入水底,起到净水作用。所以明矾净水不是氧化还原反应。

15.【答案】D

【考情点拨】本题考查了化学反应平衡的知识点。

【应试指导】防止碳酸氢铵分解可知,是促进反应的逆方向,由化学反应方程式可知,碳酸氢铵分解是压强增大反应,增大压强,会增加逆反应速率,降低分解速率,A、B、选项均增加了正反应速率,加快碳酸氢铵的分解。

二、填空题

16.【答案】0.2 3 30

【考情点拨】本题考查了匀加速运动及其计算的知识点。

【应试指导】由图可知, $0\sim10$ s 内速度由 2 变减 4,且为匀加速运动,所以, $a=\frac{4-2}{10}=0$. 2 m/s²,平均速度 $v=\frac{2+4}{2}=3$ m/s,位移 $s=\frac{1}{2}\times0$. $2\times10^2+2\times10=30$ m。

17.【答案】mv² 0

【考情点拨】本题考查了动量守恒的知识点。

【应试指导】总动能最大的情况为发生弹性碰撞,碰撞后两物体速度大小没变,速度方向变反,总动能大小仍为 $\frac{1}{2} \times 2mv^2 = mv^2$;总动能最小情况,碰撞后两物块均静止,总动能大小为 0。

18.【答案】正
$$\sqrt{(mg)^2 + (k\frac{Qq}{r^2})^2}$$

【考情点拨】本题考查了带电粒子的受力分析的知识点。

【应试指导】对小球进行受力分析,水平方向只有受到斥力才可以受力平衡,所以A球带正电荷,竖直方向重力为mg,水平方向上受到电荷斥力F=k $\frac{Qq}{r^2}$,由受力情况可知,张力大小T在对角线,应用勾股定理可知,

$$T = \sqrt{(mg)^2 + (k \frac{Qq}{r^2})^2}$$

19.【答案】9.86

【考情点拨】本题考查了单摆运动的知识点。

【应试指导】由单摆运动的周期公式: $T=2\pi\sqrt{\frac{L}{g}}$ 变换得 $g=\frac{4\pi^2L}{T^2}$,其中 $T=\frac{100}{50}=2$ s,L 表示摆线起点到球心的距离,即 $L=0.99+\frac{0.02}{2}=1$ m, $g=\frac{4\pi^2L}{T^2}=\frac{4\times 3.14^2\times 1}{2^2}=9.859$ 6 \approx 9.86 m/s²。

20.【答案】乙醇 加成反应

【考情点拨】本题考查了加成反应的知识点。

第7页 共8页

【应试指导】该反应的化学方程式为:CHACHO+H2 CH3CH2OH,催化剂为镍,生成物为乙醇,是典型的加成反应。

21.【答案】KCl Na₂SO₄

【考情点拨】本题考查了常见化学反应现象的知识点。

【应试指导】白色粉末溶于水为无色溶液,排除 $CuSO_4$,溶液逐滴加入硫酸铝溶液中无明显反应现象,排除 $BaCl_2$, NaOH, 即剩下 KCl 和 Na_2SO_4 。

22.【答案】CO₂ 6

【考情点拨】本题考查了氧化还原反应的知识点。

【应试指导】反应前后 C 的化合价升高,所以氧化产物为 CO_2 ,标准状况下,44.8LNO2 即为 44.8/22.4=2 mol,该反应的还原剂为 C,由化学反应方程式可知参与反应的 C 为 2/4=0.5 mol, C 为该反应的还原剂,参与反应质量即为: $0.5\times12=6$ g。

23.【答案】11

【考情点拨】本题考查了化学反应 pH 值的计算的知识点。

【应试指导】pH=12 即 NaOH 的浓度为 $10^{-14+12}=0.01$ mol/L, 100 ml 稀释至 1 L 即稀释 10 倍, 浓度变为 0.001 mol/L, pH=12-1=11(14+lg0.001=11)。

24.【答案】Fe2-

【考情点拨】本题考查了金属及其化合物和酸的反应的知识点。

【应试指导】将生锈的铁钉放入酸中主要发生的反应有: $Fe_2O_3 \cdot nH_2O + 6H^+ = 2Fe^{3+} + (n+3)H_2O_7Fe + 2H^+ = Fe^{2+} + H_2 \uparrow$, Fe^{3+} 具有强氧化性, 在含有过量的铁的酸性溶液中被还原为 Fe^{2+} , 剩余的铁与酸反应, 仍然生成 Fe^{2+} , 所以存在的主要阳离子只有 Fe^{2+} 。

25.【答案】 +9 2 7 H: Cl:

【考情点拨】本题考查了原子结构及电子式的知识点。

【应试指导】由题意可知, Y^- 和 Na^+ 具有相同的电子层结构,所以 Y 为 F; Y、Z 属于同一主族,原子序数小于 18,所以 Z 为 Cl,XZ 的水溶液为一种强酸,即为 HCl。

26.【答案】排水法收集

【考情点拨】本题考查了常见物质的收集方法的知识。

【应试指导】由于乙烯的空气密度跟空气接近,所以不能用排空气法,而乙烯不溶于水,所以实验室中最适宜用排水法收集。

三、计算题

27. 开关接通 a 点时: $I_1 = \frac{E}{r + R_1}$, $W_1 = I_1^2 R_1$

同理当开关接通 b 点时: $I_2 = \frac{E}{r + R_2}$, $W_2 = I_2^2 R_2$

将数值代入式中,可以解得 E=6 V,r=0.5 Ω 。

28. (1)设物块 C 滑上 B 板后, A 板的速度为 v_1 由动量守恒, $mv_0 = 2mv + mv_1$

解得 $v_1 = 1 \text{ m/s}$,则 A 板的动能 $E_{kl} = \frac{1}{2} m v_1^2 = 0.5 \text{ J}$ 。

(2)整个系统的重力势能没发生改变,只需要考虑动能

系统刚开始的动能(即 C 板的动能): $E_{kl} = \frac{1}{2} m v_0^2$

系統稳定时候的动能: $E_{k2} = \frac{1}{2}(2m)v^2 + \frac{1}{2}mv_1^2$

整个过程损失的机械能 $\Delta E = E_{kl} - E_{k2} = 11.25 \text{ J}$ 。

29. 由题可知,该有机物与氢气的相对密度为22

即该有机物相对分子质量为: $22\times2=44$, 4.4g 该有机物即 $\frac{4.4}{44}=0.1$ mol

生成的二氧化碳和水分别为 $\frac{4.48}{22.4}$ =0.2 mol, $\frac{3.6}{18}$ =0.2 mol

0.1:0.2:0.2=1:2:2

即化学反应方程式有机物、二氧化碳、水的系数之比为1:2:2

则可以对方程式进行配平: $C_x H_v O_z + nO_2 = 2CO_2 + 2H_2 O$

C、H 原子守恒可得 x=2, y=4, 即 C_2 H_4 O_z , 又因为相对分子质量为 44, 所以 z=1 , 综上该有机物的分子式为 C_2 H_4 O_z

